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Abstract—Human-unmanned aerial vehicle (UAV) collab-
oration requires control frameworks that are both efficient
and safe. This paper introduces a stochastic fixed-time
inverse optimal control (FxT-IOC) approach designed for
such systems. The proposed framework constructs inverse
optimal control, enabling the extraction of human operator
intent. It features a fixed-time adaptive learning mechanism
that guarantees parameter convergence within a prede-
termined time, irrespective of initial conditions. Crucially,
the design explicitly incorporates prescribed performance
control (PPC) to enforce state constraints while handling
input saturation, ensuring operational safety and reliability.
Rigorous theoretical analysis establishes the fixed-time
stability of the learning process and the closed-loop system
under these constraints. The effectiveness of the FxT-IOC
framework is validated through comprehensive numerical
simulations and physical hardware experiments, demon-
strating superior trajectory tracking precision, accelerated
learning convergence, and robust constraint satisfaction
compared to human demonstrations. This work offers
a principled and practical solution for developing high-
performance, reliable human-UAV collaborative systems.

Index Terms—Human-UAV interaction, inverse optimal
control, fixed-time learning, adaptive dynamic program-
ming.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) are increasingly vital
in applications ranging from infrastructure inspection

to emergency response [1], [2]. This proliferation requires
sophisticated control strategies capable of effectively inte-
grating human operational expertise with autonomous system
capabilities. A central challenge lies in achieving this synergy
safely and efficiently [3]. While purely manual control can be
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demanding and susceptible to errors [4], [5], fully autonomous
systems may lack the adaptability required for complex,
dynamic environments [6]. Human-robot interaction (HRI)
frameworks seek to overcome these limitations by leveraging
the complementary strengths of human strategic guidance
and autonomous precision execution [7], [8]. Developing
robust collaborative control mechanisms is therefore crucial
[9], drawing upon advancements in areas such as master-
slave control [10], practical fixed-time methods [11], and
cooperative games [12] to enhance overall system performance
and reliability.

Integrating human operator expertise with autonomous UAV
capabilities presents a significant challenge. This necessitates
methods that can interpret human decision-making, such as
learning directional preferences [13] or modeling behavior
within the loop [6], and adapt control strategies to dynamic
mission requirements using techniques like composite adaptive
learning [14]. Inverse Optimal Control (IOC) [15] provides
a principled framework for this by inferring underlying ob-
jectives from observed expert actions, enabling the synthesis
of control policies that align with human intent [16]. Recent
advancements have explored game-theoretic [17] and trust-
region [18] formulations. This inference enables the synthesis
of control policies aligned with human intent [19], while also
considering optimality guarantees and safety aspects crucial
for cooperative tasks [12], and potentially scaling to multi-
agent coordination [20]. In [21], a IOC-based method for
inferring constraints from demonstrations is proposed, enhanc-
ing the interpretability of human-UAV interactions. However,
many traditional IOC approaches, including those applied to
drone objective inference [22] or incorporating anomaly de-
tection [23], often rely on asymptotic convergence properties.
These may prove inadequate for the rapid adaptation and
response times crucial in real-time human-UAV collaboration
scenarios.

While traditional IOC methods, including recent variants
[22], [24], offer valuable tools for inferring intent, their
reliance on asymptotic convergence often falls short in dy-
namic human-UAV collaboration where rapid adaptation is
paramount. Fixed-time stability theory [25], [26] provides
a crucial advantage by guaranteeing convergence within a
predetermined time, irrespective of initial conditions, even in
stochastic [27] or discrete-time [28] settings. This predictable
convergence is vital for ensuring the safety and reliability
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demanded by applications such as practical tracking [29] and
adaptive control [30]. Consequently, recent research increas-
ingly studies fixed-time principles with learning-based control
paradigms like Adaptive Dynamic Programming (ADP) and
Inverse Reinforcement Learning (IRL) [31]. Efforts encom-
passing fixed-time system identification [32], event-triggered
control [33], ADP [34], and adaptive optimal IRL [35], [36]
demonstrate the potential for enhanced convergence speed
compared to conventional methods [37], overcoming limita-
tions in time-critical human-robot interaction scenarios. De-
spite these advancements, a significant challenge persists in
simultaneously achieving guaranteed fixed-time convergence,
effective human intent inference via IOC, and robust handling
of state and input constraints within human-UAV systems.
Existing IOC approaches often lack predictable convergence
guarantees [15], [24], while many fixed-time control methods
[34], [38] do not adequately integrate human factors or manage
complex operational limits like Prescribed Performance Con-
trol (PPC) and input saturation. This paper introduces a novel
Fixed-Time Inverse Optimal Control (FxT-IOC) framework
specifically designed to address these concurrent requirements.
The main contributions of this work include:

1) FxT-IOC for Human Intent Learning: A novel FxT-
IOC framework is introduced to learn the human oper-
ator’s reward function within a guaranteed fixed time,
independent of initial conditions. This approach over-
comes the asymptotic convergence limitations of tradi-
tional IOC methods [15], [22].

2) Optimal Control with State-Input Constraints: A
unified optimal control synthesis is developed to sys-
tematically handle both state constraints via Prescribed
Performance Control (PPC) and input saturation. This
coordination achieves high-performance tracking while
respecting physical actuator limits, a key challenge that
is often overlooked in prior works [6], [38].

3) Rigorous Fixed-Time Stability Guarantees: A formal
theoretical proof of fixed-time stability for both the
parameter learning and the closed-loop system is pro-
vided in Theorem 1. This guarantee of convergence to a
bounded residual set within a fixed time is a significant
advancement over common asymptotic results [31], [39].

The paper is organized as follows: Section II presents prelim-
inaries. Section III formulates the problem. Section IV details
the FxT-IOC framework. Section V provides validation results.
Section VI concludes the paper.
Notations: λ̄(·), λ(·) denote maximum and minimum eigen-
values, respectively; sat(u) is the saturation function; E[·],P[·]
are expectation and probability, respectively; ⌈x⌋γ =
|x|γ sign(x).

II. PRELIMINARIES AND SYSTEM DESCRIPTION

A. Stochastic Fixed-Time Stability Framework

This subsection introduces stochastic fixed-time stability for
analyzing convergence under uncertainty. Consider nonlinear
stochastic systems described by the Itô differential equation:

dX(t) = f(X(t), U(t))dt+ g(X(t), U(t))dW (t) (1)

TABLE I
NOTATIONS AND THEIR MEANINGS

Notation Description

System Variables:
t Time variable
xa, xp Attitude and position state vectors
e(t) Tracking error vector
ϱ Transformed tracking error (PPC)
X Augmented state vector [x⊤, ϱ⊤, x⊤d ]

⊤

Φ Euler angles [ϕ, θ, ψ]⊤ (roll, pitch, yaw)
V(t) Lyapunov function

Control and Learning Parameters:
ua, uh Autonomous and human control inputs
U Combined control input vector
γ1, γ2 Fixed-time exponents (0 < γ1 < 1, γ2 > 1)
V (X,U) Value function
Π(U) Input cost function (saturation-aware)
Ŵc, Ŵa Critic and actor network weights
θ̂ Reward function parameters (IOC)

Transformation Functions:
ϑi(t) Performance bound function
ξl,i, ξu,i Lower and upper error bounds
ϕ(·) Transformation function (e.g., tan, tanh)
Rϱ Diagonal transformation matrix (PPC)
Υ Compensation term in transformed dynamics

Learning Algorithm Components:
D(t) Experience buffer
E(t) Current learning errors
Ek Historical learning samples
δ, δθ Bellman error and reward parameter error
ζk Temporal Bellman error (historical)
Γc,Γa,Γθ Positive definite gain matrices
α1, α2 Learning rate parameters

Here, X(t) ∈ Rn is the state, U(t) ∈ Rm is the control, f
is the drift, g is the diffusion matrix, and W (t) is a standard
Wiener process. Assume f(0, 0) = 0 and g(0, 0) = 0.

Definition 1 (Stochastic Fixed-Time Stability [27]). The ori-
gin of system (1) (with U = 0) is fixed-time stable in
probability if it is stable in probability and the expected settling
time E[τ(X0)] is finite for any X0 ̸= 0, where

τ(X0) = inf{t ≥ 0 : X(t,X0) = 0}

It is globally fixed-time stable in probability if E[τ(X0)] ≤
Tmax for some Tmax > 0 and all X0 ∈ Rn.

The following lemma provides sufficient conditions for
establishing fixed-time stability based on Lyapunov theory.

Lemma 1 (Stochastic Fixed-Time Convergence Criteria [25]).
For system (1), let V (X) be a C2 positive definite function
with V (0) = 0. If there exist constants k1, k2 > 0, 0 < γ1 <
1, γ2 > 1, and σ ≥ 0 such that the infinitesimal generator
LV (X) satisfies:

LV (X) ≤ −k1V (X)γ1 − k2V (X)γ2 + σ (2)

for all X ∈ Rn \ {0}, where

LV (X) =
∂V

∂X
f(X,U) +

1

2
Tr

(
g(X,U)⊤

∂2V

∂X2
g(X,U)

)
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(a) Human-UAV Interaction System
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(b) Maneuver 1: throttle/yaw control
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(c) Maneuver 2: roll/pitch control

Fig. 1. Exemplar human maneuvers for UAV operation using a
gamepad.

then the system trajectories converge in fixed time to a residual
set ΩV around the origin. The expected settling time E[τ(X0)]
is bounded by Tmax, independent of the initial state X0:

E[τ(X0)] ≤ Tmax ≈
1

k1ϵ(1− γ1)
+

1

k2ϵ(γ2 − 1)
(3)

for any small ϵ ∈ (0, 1). The size of ΩV depends on σ, k1, k2.
If σ = 0, the origin is globally fixed-time stable in probability.

Remark 1 (Stochastic Fixed-Time Convergence). Lemma 1
guarantees convergence to a residual set within a fixed time,
independent of initial conditions. The exponents γ1, γ2 ensure
rapid convergence, while σ bounds the residual error. This
predictability is vital for real-time systems.

B. Quadrotor UAV Dynamics with Input Constraints
Consider a quadrotor UAV system whose dynamics involve

coupled attitude and position components, as illustrated in
Fig. 1(a). The human operator interacts with the UAV via
control inputs, depicted in Fig. 1(b) and Fig. 1(c). The attitude
dynamics are described using Euler angles [40]:

MaΦ̈ = −Ca(Φ, Φ̇)Φ̇ + T + τd (4)

where Ma = diag([Jϕ, Jθ, Jψ]) is the inertia matrix, Φ =
[ϕ, θ, ψ]⊤ are the Euler angles (roll, pitch, yaw) with con-
straints ϕ, θ ∈ (−π2 ,

π
2 ), ψ ∈ [−π, π]. Ca(Φ, Φ̇) is the

Coriolis/centrifugal matrix, T = [γϕ, γθ, γψ]
⊤ is the control

torque vector: γϕ = αlαwuϕ, γθ = αlαwuθ, γψ = αγuψ , with
constants αl, αw, αγ . τd represents disturbances. The control
inputs uϕ, uθ, uψ derive from rotor speeds ω2

j (j = 1, . . . , 4):
uϕ = ω2

1 −ω2
3 , uθ = ω2

2 −ω2
4 , uψ = ω2

1 +ω2
3 −ω2

2 −ω2
4 . The

translational dynamics are given by [12]:

Mpϱ̈ = FTR(Φ)e3 −Mpge3 + dp (5)

where ϱ = [x, y, z]⊤ is the position, Mp is the mass, FT =∑4
j=1 ω

2
j is the total thrust, R(Φ) is the rotation matrix (body

to inertial), e3 = [0, 0, 1]⊤, g is gravity, and dp represents
disturbances. The attitude and position state vectors are:{

xa = [ϕ, θ, ψ, ϕ̇, θ̇, ψ̇]⊤ ∈ R6 (attitude state)

xp = [x, y, z, ẋ, ẏ, ż]⊤ ∈ R6 (position state)

The complete UAV dynamics, incorporating both autonomous
control ua and human operator input uh, can be represented
in state-space form:[
ẋa
ẋp

]
=

[
fa(xa)

fp(xa, xp)

]
+

[
ga(xa)

0

]
ua+

[
0

gp(xa)

]
uh+d(t) (6)

where ua ∈ Rma and uh ∈ Rmh are the autonomous
and human control inputs, respectively, subject to saturation
constraints: |ua,i| ≤ ūa,i for i = 1, . . . ,ma and |uh,i| ≤ ūh,i
for i = 1, . . . ,mh. The terms fa, fp represent the drift
dynamics, ga, gp are the input matrices, and d(t) lumps the
disturbances τd, dp. Specifically:

fa(xa) =

[
Φ̇

−M−1
a Ca(Φ, Φ̇)Φ̇

]
, ga(xa) =

[
03×ma

M−1
a Ba

]
,

fp(xa, xp) =

[
ϱ̇
−ge3

]
, gp(xa) =

[
03×mh

R(Φ)e3
Mp

]
where Ba maps ua to the control torques T . Note that the
human input uh typically controls the total thrust FT , affecting
the position dynamics.

For trajectory tracking tasks, let xd(t) ∈ Rn be the desired
reference trajectory, generated by a reference model ẋd(t) =
fd(xd(t)). The tracking error is defined as e(t) = x(t)−xd(t),
where x(t) = [xa(t)

⊤, xp(t)
⊤]⊤. The error dynamics are:

ė(t) = [f(x)− fd(xd)] + ga(x)ua + gh(x)uh + d(t) (7)

where f(x) = [fa(xa)
⊤, fp(xa, xp)

⊤]⊤ and the input matrices
are combined appropriately.

III. PROBLEM FORMULATION: OPTIMAL CONTROL
DESIGN WITH INPUT AND STATE CONSTRAINTS

This section formulates the state-input constrained optimal
control problem for the human-UAV system (6). The objec-
tive is precise trajectory tracking with guaranteed fixed-time
convergence, while respecting state and input constraints and
integrating human intent via IOC. A unified PPC transforma-
tion and saturation-aware costs framework given in Fig. 2 is
used to achieve these goals.

A. PPC-based State Constraint Transformation

Prescribed Performance Control (PPC) enforces constraints
on the tracking error e(t) by ensuring it remains within
predefined time-varying bounds: ξl,i(t) < ei(t) < ξu,i(t).

Definition 2 (Prescribed Performance Bound [29]). A smooth,
positive, and decreasing function ϑi(t) : R≥0 → R>0 is a
performance bound function if it satisfies:

lim
t→∞

ϑi(t) = ϑi∞ > 0, ϑi(0) = ϑi0 > ϑi∞ (8)

for i = 1, 2, . . . , n. A common choice is an exponential decay:

ϑi(t) = (ϑi0 − ϑi∞)e−λit + ϑi∞ (9)

where λi > 0 determines the convergence rate towards the
steady-state bound ϑi∞.
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Fig. 2. Visualization: (Left) Unified PPC transformation (11) for state constraints (ei → ϱi). (Right) Tanh function for input saturation (29) (|ui| ≤ µi).

The time-varying lower and upper bounds for the tracking
error ei(t) are defined using the performance bound function:

ξl,i(t) = −ζl,iϑi(t), ξu,i(t) = ζu,iϑi(t) (10)

where ζl,i, ζu,i ∈ (0,∞) are constants defining the shape
and asymmetry of the performance funnel. To transform the
constrained error ei(t) into an unconstrained variable ϱi(t), the
following mapping (visualized in Fig. 2, Left) is employed:

ϱi = ϕ

(
2πei − π(ξl,i + ξu,i)

2(ξu,i − ξl,i)

)
ei =

ξl,i + ξu,i
2

+
ξu,i − ξl,i

2π
ϕ−1(ϱi)

(11)

where ϕ(·) = tan(·) maps the normalized error to (−∞,∞).
Bounded ϱi(t) ensures that ei(t) remains within the bounds
(ξl,i(t), ξu,i(t)). The dynamics of the transformed error ϱi are
obtained by differentiation:

ϱ̇i =
∂ϱi
∂ei

ėi +
∂ϱi
∂ξl,i

ξ̇l,i +
∂ϱi
∂ξu,i

ξ̇u,i = Rϱiėi +Υi (12)

where Rϱi=
∂ϱi
∂ei

= π sec2
(

2πei−π(ξl,i+ξu,i)
2(ξu,i−ξl,i)

)
/(ξu,i − ξl,i) >

0 and Υi =
∂ϱi
∂ξl,i

ξ̇l,i+
∂ϱi
∂ξu,i

ξ̇u,i is a term involving derivatives
of the bounds. The vectorized transformed error dynamics are:

ϱ̇ = Rϱė+Υ (13)

where ϱ = [ϱ1, . . . , ϱn]
⊤, Rϱ = diag(Rϱ1, . . . ,Rϱn) ≻ 0,

and Υ = [Υ1, . . . ,Υn]
⊤. Combining (6), (7), (13), and ẋd =

fd(xd), the augmented system is:

Ẋ = F (X) +G(X)U +D(t) (14)

where the augmented state is X = [x⊤, ϱ⊤, x⊤d ]
⊤ ∈ RNX

(with NX = dim(x) + dim(ϱ) + dim(xd)), the combined
control input is U ∈ Rm, and the augmented drift, input
matrix, and disturbance terms are:

F (X) =

 f(x)
Rϱ(f(x)− fd(xd)) + Υ

fd(xd)

 , (15)

G(X) =

 ga(x) gh(x)
Rϱga(x) Rϱgh(x)

0 0

 , D(t) =

 d(t)
Rϱd(t)

0


Here, U = [u⊤a , u

⊤
h ]

⊤ combines autonomous and human
inputs, and 0 denotes zero matrices/vectors of appropriate di-
mensions. The augmented system dynamics (14) are assumed
to satisfy the following property:

Assumption 1 (System Properties [41]). The dynamics F (X)
and G(X) are locally Lipschitz continuous. The disturbance
D(t) is bounded, i.e., ∥D(t)∥ ≤ D̄ for some constant D̄ > 0.

∥F (X1)− F (X2)∥ ≤ LF ∥X1 −X2∥ (16)
∥G(X1)−G(X2)∥ ≤ LG∥X1 −X2∥ (17)

Furthermore, the disturbance D(t) is bounded, i.e., ∥D(t)∥ ≤
D̄ for some constant D̄ > 0.

B. Optimal Control with Input Constraints
The objective is to design a control policy U(t) for the

augmented system (14) that minimizes an infinite-horizon cost
functional, ensuring fixed-time convergence and respecting
input saturation constraints. The cost functional is defined as:

J(X0, U(·)) = E
{∫ ∞

0

e−γt r(X(τ), U(τ)) dτ

∣∣∣∣ X(0) = X0

}
where γ > 0 is the discount factor, and the instantaneous
cost r(X,U) incorporates fixed-time convergence terms and a
saturation-aware input penalty:

r(X,U) = ∥X∥γ1Q + ∥X∥γ2Q︸ ︷︷ ︸
Fixed-Time State Cost

+ Π(U)︸ ︷︷ ︸
Input Cost

(18)

where Q ≻ 0 weights the state, 0 < γ1 < 1 and
γ2 > 1 are fixed-time exponents for fast convergence, and
∥X∥αQ = (X⊤QX)α/2. The input cost Π(U) addresses the
input saturation constraints |ui| ≤ µi through a non-quadratic
penalty function. This function, visualized in Fig. 2 and based
on the formulation in [42], is defined by the integral:

Π(U) =

∫ U

0

2µR tanh−1 (ν/µ) dν (19)

where µ contains the saturation limits and R ≻ 0
weights the control effort. The gradient is ∇UΠ(U) =
2µR tanh−1(U/µ), which penalizes inputs near saturation.

Remark 2 (Role of the tanh−1 Function). The tanh−1(·)
function within the cost functional Π(U) serves as a math-
ematical tool to derive the optimal control structure, a tech-
nique employed in similar ADP contexts [41]. Crucially, the
final implemented control policy (22) utilizes the standard hy-
perbolic tangent function. This design ensures that the control
output is inherently bounded within (−µ, µ), thus sidestepping
any numerical singularities at the saturation boundary during
execution.
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The optimal value function V ∗(X) is the minimum cost
starting from state X:

V ∗(X) = min
U(·)

J(X,U(·)) (20)

According to Bellman’s principle of optimality, V ∗(X) satis-
fies the Hamilton-Jacobi-Bellman (HJB) equation:

0 = min
U∈ΩU

{
r(X,U) +∇V ∗(X)⊤(F (X) +G(X)U)

−γV ∗(X)} (21)

where ∇V ∗(X) = ∂V ∗(X)/∂X is the gradient of the value
function, and ΩU = {U ∈ Rm : |ui| ≤ µi,∀i} is the set
of admissible controls. The optimal control policy U∗(X) is
the control that minimizes the expression within the braces
in (21). By setting the partial derivative with respect to U to
zero:

∂

∂U

{
r(X,U) +∇V ∗(X)⊤G(X)U

}
= 0

∇UΠ(U) +G(X)⊤∇V ∗(X) = 0

2µR tanh−1

(
U∗

µ

)
+G(X)⊤∇V ∗(X) = 0

Solving for U∗ yields the optimal control law:

U∗(X) = −µ tanh
(

1

2µ
R−1G(X)⊤∇V ∗(X)

)
(22)

This control law inherently respects the saturation limits µ
due to the properties of the hyperbolic tangent function. The
following standard assumption regarding the cost matrices is
made:

Assumption 2 (Cost Function Properties [42]). The cost
weighting matrices Q and R from reward (18) are positive
definite, satisfying:

λQI ⪯ Q ⪯ λ̄QI, λRI ⪯ R ⪯ λ̄RI (23)

where λQ, λ̄Q, λR, λ̄R > 0 are positive constants and I is the
identity matrix.

Solving the HJB equation (21) directly is computationally
challenging, which may cause the ‘curses of dimensionality’
[43]. The next section presents the FxT-IOC framework, which
approximates the solution and ensures fixed-time convergence.

IV. FXT-IOC FRAMEWORK DESIGN

This section details the FxT-IOC framework, which is
shown in Fig. 3, This Framework combines Inverse Optimal
Control (IOC) for human intent learning with a fixed-time
Actor-Critic structure for autonomous control synthesis. The
design ensures guaranteed convergence times and state-input
constraints satisfaction.

A. Inverse Optimal Control for Human Intent Learning
To understand and leverage the human operator’s expertise,

the framework first employs IOC to estimate the underlying
reward function guiding the human’s control actions Uh.

1) Problem Formulation: To find reward parameters θ
that best explain the observed human behavior Uh. This

Fig. 3. Architecture of the FxT-IOC framework, integrating IOC for
human intent learning and fixed-time Actor-Critic control synthesis.

is formulated as minimizing the discrepancy between the
human’s actions and the optimal actions U∗

θ (X) derived from
the estimated reward function rθ:

min
θ∈Θ
L(θ) = E

[
∥Uh − U∗

θ (X)∥2
]

(24)

where U∗
θ (X) is the policy that minimizes the cost associated

with the reward rθ. The human’s reward is parameterized
linearly:

rθ(X,U) = θ⊤ϕr(X,U) +
1

2
U⊤RhU (25)

Here, θ ∈ Rp are the unknown parameters, ϕr(X,U) is
a vector of known basis functions representing task-relevant
features, and Rh ≻ 0 is a known matrix weighting the human’s
control effort.

2) Fixed-Time Parameter Estimation: Estimate θ using
a fixed-time gradient-based update law. Let Vh(X; θ) be the
value function corresponding to the human reward rθ. The
associated Bellman error is:

δθ = rθ(X,Uh) +∇V ⊤
h (F +GUh)− γVh (26)

Assuming Vh can be approximated, the reward parameters θ̂
are updated using a composite fixed-time rule based on both
the current reward error δθ(t) and historical errors δkθ :

˙̂
θ =− αθ1Γθ∇θ̂δθ (⌈δθ(t)⌋

γ1 + ⌈δθ(t)⌋γ2)

− αθ2
N

Γθ

N∑
k=1

∇θ̂δ
k
θ

(
⌈δkθ ⌋γ1 + ⌈δkθ ⌋γ2

)
(27)

where αθ1, αθ2 > 0 are learning rates, Γθ ≻ 0 is a gain matrix,
δkθ is the historical reward error, and the exponents 0 < γ1 <
1, γ2 > 1 ensure fixed-time convergence of θ̂.

Remark 3 (On the Human Optimality Assumption). The
assumption of perfect human optimality is a simplification.
The IOC approach interprets demonstrations as near-optimal,
aligning with the concept of ‘bounded rationality’ [44]. While
more sophisticated models like Level-k theory [6], [45] or
Gaussian noise distributions [46] can be used to model
suboptimal decision-making, The current method effectively
extracts the operator’s primary intent. This provides a strong
foundation for synthesizing a robust control policy, and future
work will integrate more advanced human models based on
the related research [6].

Remark 4 (Learning from Human Interaction). The FxT-IOC
framework learns operator intent from expert control data.
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As depicted in Fig. 3, its IOC module infers the human’s
reward function (rθ) by estimating parameters (θ̂) that ex-
plain the observed actions. The core innovation is the fixed-
time update law (27), which guarantees learning completes
within a predictable, bounded time. This learned intent then
guides the autonomous control policy. Unlike traditional IOC
methods with only asymptotic guarantees [15], [22], proposed
approach ensures finite-time convergence. While other works
explore fixed-time learning [31], proposed framework offers a
more comprehensive solution by integrating state constraints
(PPC) and input saturation, features often unaddressed in
prior learning-based control schemes [6].

B. Fixed-Time Synthesis Optimal Control
The autonomous control component uses an Actor-Critic

structure to achieve optimal control according to (18), ensuring
fixed-time stability and constraint satisfaction, guided by the
learned human reward θ̂.

1) Critic Network: The critic approximates the optimal
value function V ∗(X) of Eq. (20), which is the solution to
the HJB equation (21), using a neural network:

V ∗(X) ≈ V̂ (X) = Ŵ⊤
c φc(X) (28)

where Ŵc ∈ RNc are the critic weights updated via a fixed-
time learning law (Detailed in Sec. IV-C), and φc(X) is a
basis function.

2) Actor Network: The actor approximates the optimal
policy U∗(X) of Eq. (22). Using ∇V ∗(X) ≈ ∇φc(X)⊤Ŵc,
the estimated control is given by:

Û(X;Ŵa)=−µ tanh
(

1

2µ
R−1G(X)⊤∇φa(X)⊤Ŵa

)
(29)

where Ŵa are the actor weights. This policy inherently re-
spects the saturation limits µ.

3) Bellman Error: The critic weights Ŵc are updated to
minimize the following Bellman error derived from the HJB
equation (21):

δ(X) = ∥X∥γ1Q + ∥X∥γ2Q +Π(Û(X))︸ ︷︷ ︸
Instantaneous Cost r(X,Û)

+∇V̂ (X)⊤(F (X) +G(X)Û(X))− γV̂ (X) (30)

This Bellman error δ(X) drives the fixed-time update for
the critic weights Ŵc, enabling the learning of an optimal
constrained policy with a guaranteed convergence time.

C. Fixed-Time Composite Learning Update
The FxT-IOC framework uses fixed-time composite learning

with experience replay, leveraging current and historical data
for enhanced efficiency and robustness.

1) Experience Replay Buffer: A structured experience
buffer D(t) stores past states and associated learning signals:

D(t) = {E(t)} ∪ {Ek}Nk=1 (31)

where E(t) = {X(t), Û(t), r(t), X(t+1)} represents the cur-
rent transition data, and {Ek}Nk=1 = {Xk, Ûk, rk, Xk+1}Nk=1

contains N historical samples.

2) Temporal Bellman Error: For each stored experience
k, the temporal Bellman error ζk evaluates the consistency of
the current value function estimate V̂ (X) = Ŵ⊤

c φc(X) with
the observed transition and reward:

ζk = rk + γŴ⊤
c φc(X

k+1)− Ŵ⊤
c φc(X

k) (32)

This error assesses the value function’s prediction accuracy
using past data. The current Bellman error δ(t) uses the current
data E(t) and policy Û(t) per (30). The reward parameter error
δθ is given by (26).

3) Composite Fixed-Time Update Laws: The updates
minimize a composite objective with fixed-time terms for cur-
rent and historical errors. Inspired by [31], the critic weights
Ŵc are updated using a fixed-time rule based on the current
Bellman error δ(t) and historical temporal errors ζk:

˙̂
Wc =− kc1Γc

Ψ(t)

∥Ψ(t)∥2 + ϵ1
(⌈δ(t)⌋γ1 + ⌈δ(t)⌋γ2)

− kc2
N

Γc

N∑
k=1

Ξk

∥Ξk∥2 + ϵ2

(
⌈ζk⌋γ1 + ⌈ζk⌋γ2

)
(33)

where kc1, kc2 > 0 are adaptation gains, Ψ(t) =
∇ψc[F (X(t)) +G(X(t))Û(X(t))] is the current feature dif-
ference vector, Ξk = ∇ψc[F (Xk) + G(Xk)Û(Xk)] is the
historical feature difference vector, Γc ≻ 0 is a positive
definite gain matrix, ϵ1, ϵ2 > 0 ensure numerical stability,
and 0 < γ1 < 1, γ2 > 1 provide fixed-time convergence.
For the actor network, the weights Ŵa are updated using
a fixed-time composite law based on the actor error δa =
Û(X; Ŵa)− Û(X; Ŵc). The update is:

˙̂
Wa =− αa1Γa

Ψ(t)

∥Ψ(t)∥2 + ϵ1
(⌈δa(t)⌋γ1 + ⌈δa(t)⌋γ2)

− αa2
N

Γa

N∑
k=1

Ξk

∥Ξk∥2 + ϵ2

(
⌈δka⌋γ1 + ⌈δka⌋γ2

)
(34)

where αa1, αa2 > 0 are learning rates, Γa ≻ 0 is a gain matrix,
and δka is the historical actor error. This fixed-time update uses
current and past data. See Algorithm 1.
Remark 5 (Coordination of PPC and Input Saturation). A crit-
ical challenge in human-UAV systems is reconciling aggressive
state constraint enforcement with inherent input saturation
from actuators and human interfaces. Demanding rapid error
convergence via PPC can lead to control commands that
exceed physical limits. Proposed framework resolves this by
coordinating the PPC convergence rate λi with the input
saturation level µ in the control law (22). This co-tuning
ensures that state constraints are met without demanding
unrealizable control actions, thereby guaranteeing both safety
and performance, a challenge also addressed in [29], [41].

Remark 6 (Comparison with Existing Methods). As summa-
rized in Table II, prior methods often lack guaranteed time-
critical convergences [15], comprehensive constraint handling
[38], or full integration of human intent [6]. Proposed FxT-
IOC framework uniquely combines these critical features:
fixed-time convergence, state (PPC) and input constraints,
human integration via IOC, and stability guarantees, offering
a holistic solution for human-UAV collaboration.
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Algorithm 1 FxT-IOC Framework Algorithm

Input: Ŵc(0), Ŵa(0), θ̂(0), Γc, Γa, Γθ, kc1, kc2, ka1, ka2,
αθ1, αθ2, γ1, γ2, N , ϵterm, Tend.

Output: Û(X), Ŵc, θ̂.
1: Initialize buffer D = ∅.
2: while t < Tend and not converged do
3: Get state X(t).
4: Compute Û(t) using (29).
5: Apply U(t); Observe X(t+ 1), r(t).
6: Store {X(t), Û(t), r(t), X(t+ 1)} in D.
7: Compute δ, ζ, δθ using (30), (32), (26).
8: Sample minibatch {Ek}Nbatch

k=1 from D.
9: Compute ζk, δkθ for the minibatch.

10: Update θ̂ using (27).
11: Update Ŵc using (33).
12: Update Ŵa using (34).
13: t← t+ dt.
14: end while
15: return Û(X), Ŵc, θ̂.

TABLE II
COMPARISON OF FXT-IOC WITH EXISTING METHODS

Method
Fixed-Time

Convergence
State

Constraints
Input

Constraints
Human

Integration
Stability

Guarantees

Conventional IOC [15] ✗ ✗ ! ! ✓

ADP-based Control [6] ✗ ✗ ✓ ! ✓

Game-based IOC [17] ✗ ✗ ✗ ✓ ✓

Trust-region IOC [18] ✗ ✓ ✗ ✓ ✓

Fixed-time Control [38] ✓ ! ! ✗ ✓

Proposed FxT-IOC ✓ ✓ ✓ ✓ ✓

Legend: ✓Full support; ✗Not supported; ! Partial support. Colors indicate
the level of support.

Remark 7 (Actor Update Stability). Actor updates can be-
come unstable when driven by inaccurate critic gradients
[29], [47]. This framework employs two mechanisms to ensure
stability. First, the critic’s composite learning update (33)
uses historical data to produce a smoother, more stable value
estimate V̂ (X). Second, the actor’s policy (29) is bounded by
a hyperbolic tangent function, Û(X) = −µ tanh(·). This in-
herently prevents excessive control signals, even with transient
critic errors, promoting a robust learning process for actor.

Remark 8 (Motivation for Human Intent Learning). Human
intent learning combines the strategic adaptability of human
operators with the precision of autonomous control. While
manual control is error-prone and full autonomy may lack
situational judgment, the proposed FxT-IOC framework offers
a synergistic solution. It uses Inverse Optimal Control (IOC)
to learn the operator’s reward function from demonstrations.
Unlike traditional IOC methods with only asymptotic con-
vergence, proposed approach guarantees this learning occurs
within a fixed time—a critical advantage for real-time collab-
oration. The learned intent then guides an autonomous policy
that ensures high-precision tracking and robust constraint sat-
isfaction, effectively blending human guidance with machine
reliability.

D. Stability Analysis

This section establishes theoretical guarantees for the FxT-
IOC framework.

Assumption 3 (Approximation Properties [39]). The optimal
value function V ∗(X) and human value function Vh(X)
are approximated using basis functions φc(X), φh(X) with
ideal weights W ∗

c ,W
∗
h and bounded errors εc(X), εh(X),

respectively, i.e., ∥εc∥ ≤ ε̄c, ∥εh∥ ≤ ε̄h. The basis functions
φc, φh, ϕr and their gradients are bounded. All approximation
errors, Bellman errors, and estimated weights are assumed to
be bounded.

Assumption 4 (Persistent Excitation Condition [37]). The
regressors Ψ(t) (current) and Ξk (historical), including those
for the θ̂ update, satisfy a composite Persistent Excitation (PE)
condition: there exist T, ρ > 0 such that

λmin

{∫ t+T

t

Ψ(τ)Ψ⊤(τ)

∥Ψ(τ)∥2 + ϵ1
dτ +

1

N

N∑
k=1

Ξk[Ξk]⊤

∥Ξk∥2 + ϵ2

}
≥ ρ

Remark 9 (Practical Considerations for the PE Condition).
The Persistent Excitation (PE) condition is crucial for param-
eter convergence in adaptive control, though its analytical ver-
ification for nonlinear systems is often intractable. In practice,
the PE condition is often satisfied by designing sufficiently rich
reference trajectories [28]. Furthermore, proposed composite
learning approach, which leverages a replay buffer of histor-
ical data (Eq. (31)), relaxes the requirement to an integral
PE condition, enhancing robustness against temporary data
sparsity [37]. The controller finds parameters sufficient for sta-
bilization, demonstrating robustness to weakened excitation.
Further research could explore sparse PE conditions [48] to
ensure persistent excitation in practical scenarios.

Let the parameter estimation errors be W̃c = W ∗
c − Ŵc,

θ̃ = θ∗−θ̂, and W̃a =W ∗
a−Ŵa. The combined error vector is

Z̃(t) = [W̃⊤
c , θ̃

⊤, W̃⊤
a ]⊤. The combined gain matrix is ΓZ =

blkdiag(Γc,Γθ,Γa).

Theorem 1 (Fixed-Time Convergence of Parameter Estima-
tion). Under Assumptions 1-4, consider the augmented system
(14) controlled by the policy derived from (29) with parameter
updates from Algorithm 1 (0 < γ1 < 1, γ2 > 1). Let
Z̃(t) = [W̃c(t)

⊤, θ̃(t)⊤, W̃a(t)
⊤]⊤ be the combined parameter

estimation error vector. Then, the estimation error converges
in fixed time to a residual set around the origin. Specifically,
consider the Lyapunov function L(Z̃) = 1

2 Z̃
⊤Γ−1

Z Z̃. There
exist positive constants c1, c2, exponents η1 = (1 + γ1)/2 ∈
(1/2, 1), η2 = (1 + γ2)/2 > 1, and a bound ΠL ≥ 0
(dependent on approximation errors and disturbances) such
that the time derivative of L satisfies:

L̇(Z̃) ≤ −c1Lη1 − c2Lη2 +ΠL (35)

1) The error Z̃ converges to the resid-
ual set ΩL = {Z̃ | L(Z̃) ≤
max{(ΠL/(c1 − c1ϵ))1/η1, (ΠL/(c2 − c2ϵ))1/η2}}
for any small constant ϵ ∈ (0, 1).
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(a) Actor-critic and IOC weights (b) Position tracking errors e1, e2, e3 (c) State trajectory tracking x1, x2

Fig. 4. Simulation results: (a) Convergence of critic and IOC weights, demonstrating learning stability. (b) Position tracking errors over time, showing
adherence to performance bounds. (c) Tracking of selected state components (e.g., roll ϕ and pitch θ) against their desired trajectories.

2) The convergence time T required to reach ΩL is
bounded by T ≤ Tmax, where

Tmax ≈
1

c1ϵ(1− η1)
+

1

c2ϵ(η2 − 1)
(36)

This upper bound Tmax is independent of the initial
estimation error Z̃(0).

The constants c1, c2,ΠL depend on the system dynamics
(Assumption 1), cost function (Assumption 2), approximation
capabilities (Assumption 3), PE levels (Assumption 4), and the
chosen learning gains and fixed-time exponents.

Proof. The proof of fixed-time convergence for the estimation
error Z̃, based on Assumptions 1-4 and Lemma 1, is detailed
in Appendix A.

Remark 10 (Convergence to a Residual Set). Theorem 1
establishes that parameter errors converge to a residual set
ΩL, a practical outcome for adaptive systems with NN ap-
proximators and disturbances. The size of this set depends on
the approximation errors (ε̄c, ε̄h) and system disturbances (D̄).
While the error bound can be reduced by improving the NN or
increasing learning gains, the key contribution is guaranteeing
this convergence occurs within a fixed time Tmax, which is
critical for real-time performance guarantees.

Remark 11 (Novelty of the FxT-IOC Approach). The core
novelty of this work is a fixed-time learning mechanism
for Inverse Optimal Control (IOC), designed for real-time
human-UAV collaboration. Traditional IOC methods offer only
asymptotic convergence guarantees [24], [49], which are often
insufficient for dynamic, safety-critical applications. Proposed
FxT-IOC framework overcomes this by using the update law
(27), which guarantees that human reward parameters (θ̂)
converge within a predetermined time, as proven in Theorem
1. This predictable, fast convergence is a key distinction from
conventional IOC and is critical for reliable human-in-the-
loop systems.

V. EXPERIMENTAL VALIDATION

This section evaluates the FxT-IOC framework using
quadrotor UAV simulations and hardware experiments. The

Fig. 5. Normalized tracking error demonstrating FxT convergence.

3 3 3
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3. Motion capture cameras 4. Display for pilot input collection

5. 5GHz WI-FI for communication 6. Workstation for online learning2. Gamepad for pilot maneuver

1. Quadcopter for experiments

Fig. 6. Hardware experimental platform comprising the Droneyee-X150
UAV, OptiTrack motion capture system, and control station.

fixed-time learning convergence and trajectory tracking under
prescribed constraints are validated.

TABLE III
KEY SIMULATION PARAMETERS

Parameter Value Parameter Value
State Penalty Q 2I6 FxT Exponent γ1 0.8

Control Penalty R I4 FxT Exponent γ2 1.2

Gain Γ∗ (∗ = a, c) diag(10) Buffer Size N 30

IOC Gain Γθ diag(5) Time Step ∆t 0.001 s
First Rate k∗1 0.05 Sim. Duration Tsim 100 s
Second Rate k∗2 0.15 Discount γ 0.90

A. Simulation Results
First, the simulation results are presented, followed by hard-

ware experiments to demonstrate the practical applicability of
the proposed framework.

1) Simulation Setup: The simulations utilize a standard
quadrotor attitude dynamics model as described in Sec-
tion II, focusing on tracking a desired attitude trajectory
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(a) Tracking errors with PPC bounds (b) Neural network weight evolution (c) Control inputs

(d) Fixed-time convergence validation (e) Position tracking performance (f) Trajectory tracking performance

Fig. 7. Hardware results: (a) Weight convergence. (b) Control inputs. (c) Error norm convergence. (d) Bounded Errors. (e) Positions. (f) Trajectory.

xd(t) = [ϕd(t), θd(t), ψd(t), ϕ̇d(t), θ̇d(t), ψ̇d(t)]
⊤. The refer-

ence trajectory involves sinusoidal components designed to
excite the system dynamics: ϕd(t) = 0.2 sin(0.25t), θd(t) =
0.15 sin(0.25t), ψd(t) = 0.3 sin(0.15t). The control goal, with
tracking error e = x−xd, is to minimize state deviations within
a fixed time boundary. For approximation, neural network
basis functions are employed as:

φi =
[
e21, e

2
2, e1e2, e

2
3, e1e3, e2e3, e

2
4, e

2
5, e

2
6, e1e4, e2e5, e3e6

]⊤
The simulation parameters are summarized in Table III. The
fixed-time exponents are set to γ1 = 0.8 and γ2 = 1.2 to lever-
age both fast initial adaptation and precise final convergence.
The simulations were performed in MATLAB/Simulink with
a step of ∆t = 0.001s over a duration of Tsim = 100 s.

2) Fixed-Time Convergence Analysis: Theorem 1 estab-
lishes that the parameter estimation errors converge within a
fixed time Tmax, bounded by:

Tmax ≈ 1/(c1ϵ(1− η1)) + 1/(c2ϵ(η2 − 1))

where η1 = (1 + γ1)/2 and η2 = (1 + γ2)/2. The coeffi-
cients c1 and c2 are positive constants influenced by learning
rates, the PE condition (Assumption 4), and neural network
approximation accuracy. While a precise analytical derivation
is complex, an illustrative calculation is provided. Using the
simulation parameters from Table III (γ1 = 0.8, γ2 = 1.2),
it comes η1 = 0.9 and η2 = 1.1. For illustrative purposes,
assuming the learning gains and PE conditions yield effective
coefficients c1 ≈ 1.0 and c2 ≈ 0.25, and setting ϵ = 1, the
terms evaluate as:

First term: 1/(c1ϵ(1− η1)) ≈ 10 s
Second term: 1/(c2ϵ(η2 − 1)) ≈ 40 s

Consequently, the theoretical upper bound is Tmax ≈ 50
seconds in this example.

Remark 12 (Observed vs. Theoretical Convergence). The
theoretical Tmax provides a conservative upper bound for
parameter convergence (approximately 50 s in this example).
In practice, convergence is much faster, as simulations show
that the learning weights (Fig. 4(a)) and estimation error
(Fig. 5) stabilize in about 20 s. This gap highlights the
efficiency of the fixed-time scheme, ensuring rapid, predictable
convergence well within the theoretical bound, regardless of
initial conditions.

3) Performance Analysis: The simulation results validate
the core features of the FxT-IOC framework.

1) Learning Convergence: As analyzed above, the critic
(Ŵc) and IOC (θ̂) weights converge smoothly to stable values
within a fixed time (Fig. 4(a)). The normalized estimation
error also converges rapidly (Fig. 5), confirming the fixed-time
stability guaranteed by Theorem 1.

2) Tracking Performance: Position tracking errors are
quickly minimized and maintained within small bounds (Fig.
4(b)), demonstrating effective control and adherence to pre-
scribed performance constraints. The UAV accurately follows
the desired trajectories for position states (Fig. 4(c)).

The simulations confirm that the FxT-IOC framework pro-
vides stable, rapid fixed-time learning convergence and pre-
cise trajectory tracking, outperforming traditional asymptotic
methods in predictability and efficiency.

TABLE IV
HARDWARE EXPERIMENTAL PARAMETERS

Parameter Value Parameter Value
Control Freq. fc 30 Hz FxT Exponent γ1 0.5

Time Step ∆t 33.3 ms FxT Exponent γ2 2.0

UAV Mass m 310 g Initial Ŵc(0) [10, 10, 10]⊤

State Penalty Q diag(100, 100) Critic Rate kc1 1.0
Input Penalty R diag(500, 500) Critic Rate kc2 0.01
Input Saturation µ ±1.0 m/s Discount γ 0.99
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B. Hardware Implementation
To validate the practical applicability and real-world per-

formance of the FxT-IOC framework, experiments were con-
ducted on a physical quadrotor platform.

1) Experimental Setup: The hardware setup (Fig. 6) in-
cluded a Droneyee-X150 UAV (RK3566 onboard), an Op-
tiTrack system (120 Hz), a control station (30 Hz WiFi
link), and a Logitech F310 gamepad (Fig. 1). Key param-
eters are listed in Table IV, including fixed-time exponents
γ1 = 0.5, γ2 = 2.0. Simplified basis functions φi =
[e2X , eXeY , e

2
Y ]

⊤ were used for reduced computation. Other
parameters matched the simulations.

2) Experimental Protocol and Results: The experiments
proceeded in three stages: 1. Demonstration: Expert manual
flight data was collected along predefined trajectories using
the gamepad shown in Fig. 6. The UAV was flown in a con-
trolled environment, capturing position and control inputs. 2.
Learning: The FxT-IOC processed the data to estimate human
reward parameters (θ̂) via IOC and train the critic network
(Ŵc). 3. Validation: The learned controller autonomously
flew the UAV with the simulation platform being the same as
in V-A using position dynamics from (6), tracking reference
trajectories while adhering to constraints. Tracking accuracy
and convergence were assessed.

The hardware experiments on the Droneyee-X150 platform
validated the FxT-IOC framework’s real-world applicability.
Key findings include:

1) Fixed-Time Learning Validation: The experiments
empirically confirmed the fixed-time convergence guaran-
tee. Estimation error norms converged rapidly within a pre-
dictable time, as shown in Fig. 7(d), and network weights
evolved stably, as shown in Fig. 7(b), supporting Theorem
1. Similar to the simulation analysis, the theoretical fixed-
time convergence bound for the experiments is estimated.
According to Theorem 1, the convergence time is bounded
by Tmax ≈ 1/(c1ϵ(1− η1)) + 1/(c2ϵ(η2 − 1)). Using the
hardware parameters from Table IV (γ1 = 0.5, γ2 = 2.0),
it comes η1 = 0.75 and η2 = 1.5. Assuming illustrative
effective coefficients c1 ≈ 0.5 and c2 ≈ 0.1 based on the
experimental setup, the theoretical upper bound is estimated
as Tmax ≈ 8 + 20 = 28 seconds. The experimental results in
Fig. 7(d) show that the error norm stabilizes in approximately
10-15 seconds, well within this conservative theoretical bound,
confirming the rapid and predictable convergence of the FxT-
IOC framework in a real-world setting.

2) Tracking and Constraint Handling: High-fidelity tra-
jectory tracking was achieved and shown in Figs. 7(a) and
7(f), which is an illustrative snapshot of the UAV’s trajectory
similar to previous work [50]. Position errors were kept small
and strictly within the prescribed performance bounds, given
in Fig. 7(e), validating the PPC mechanism. Fig. 7(c) shows
that control inputs consistently respected saturation limits and
were smoother than the manual inputs, demonstrating the
controller’s robustness and stability.

A notable feature in the results is the initial sharp decrease
observed in the tracking error norm of Fig. 7(a). This transient
behavior is caused by the initial discrepancy between the
UAV’s physical starting position and the beginning of the

human operator’s demonstration trajectory. The controller is
designed to rapidly close this initial gap to commence tracking.
It has been verified that this initial transient does not negatively
impact the overall performance or stability of the learning
system, provided the initial error is within the prescribed
performance bounds. This demonstrates the controller’s ro-
bustness in handling practical initialization mismatches.

Additionally, the experiments highlighted the importance
of tuning the fixed-time exponents to achieve optimal perfor-
mance across varying conditions. Future work will focus on
refining these parameters to enhance adaptability in dynamic
environments.

VI. CONCLUSION

This paper presented a Fixed-Time Inverse Optimal Control
(FxT-IOC) framework for human-UAV collaboration under
constraints. By integrating IOC for intent inference, fixed-time
learning for predictable convergence, PPC for state constraints,
and input saturation handling, the framework ensures efficient
and safe operation. Theoretical analysis guarantees fixed-time
stability, while simulations and experiments validated superior
tracking, faster convergence, and robust constraint satisfaction.
This work offers a practical and robust solution for developing
reliable human-UAV systems. Several limitations, such as
the simplified human intent model discussed in Remark 3
and the reliance on the PE condition discussed in Remark
9, are acknowledged. Future work will explore advanced
human modeling such as Level-k theory and applications using
Gaussian preferences regression.

APPENDIX

Proof of Theorem 1. Define the augmented parameter estima-
tion error Z̃(t) = [W̃c(t)

⊤, θ̃(t)⊤, W̃a(t)
⊤]⊤, where W̃c =

W ∗
c − Ŵc, θ̃ = θ∗ − θ̂, and W̃a = W ∗

a − Ŵa (assuming
an explicit actor network Û(X; Ŵa) with ideal weights W ∗

a is
used). Let ΓZ = blkdiag(Γc,Γθ,Γa) be the combined positive
definite gain matrix, including the actor gain Γa. Consider
the Lyapunov function candidate L(Z̃) = 1

2 Z̃
⊤Γ−1

Z Z̃ =
1
2W̃

⊤
c Γ−1

c W̃c +
1
2 θ̃

⊤Γ−1
θ θ̃+ 1

2W̃
⊤
a Γ−1

a W̃a. Its time derivative
along the error dynamics is:

L̇(Z̃) = −W̃⊤
c Γ−1

c
˙̂
Wc − θ̃⊤Γ−1

θ
˙̂
θ − W̃⊤

a Γ−1
a

˙̂
Wa (37)

Substituting the update laws (27), (33), and (34) into the ex-
pression for L̇(Z̃), and relating the errors (δ, ζk, δθ, δkθ , δa, δ

k
a)

to the parameter errors (W̃c, θ̃, W̃a) and bounded approxima-
tion errors (εc, εθ, εa) under the extended Assumption 3, it
has:

L̇(Z̃) ≤−
∑

i∈{c,θ,a}

∑
j∈{1,2}

kij (PEi) ∥Z̃i∥1+γj +Πε(Z̃, ε)

where kij are positive constants, PEi represents terms in-
volving the Persistent Excitation condition (Assumption 4,
extended to actor regressors), Z̃c = W̃c, Z̃θ = θ̃, Z̃a = W̃a,
and Πε contains bounded terms from approximation errors,
satisfying ∥Πε∥ ≤ Π1∥Z̃∥ + Π0. Using standard inequalities
and the PE condition, this simplifies to:

L̇(Z̃) ≤ −c′1∥Z̃∥1+γ1 − c′2∥Z̃∥1+γ2 +Π1∥Z̃∥+Π0 (38)
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Expressing this in terms of L using λ(Γ−1
Z )∥Z̃∥2 ≤ 2L ≤

λ̄(Γ−1
Z )∥Z̃∥2 and applying Young’s inequality to bound the

linear term in ∥Z̃∥ ∝ L1/2, it obtains:

L̇(Z̃) ≤ −c3Lη1 − c4Lη2 +ΠL (39)

where η1 = (1 + γ1)/2 ∈ (1/2, 1), η2 = (1 + γ2)/2 > 1,
and c3, c4,ΠL are positive constants depending on system
parameters, gains, PE levels, and approximation bounds. By
Lemma 1, inequality (39) ensures that the augmented pa-
rameter error Z̃(t) converges in fixed time to a residual set
ΩZ . The convergence time Tmax is bounded by Tmax ≈

1
c3ϵ(1−η1) +

1
c4ϵ(η2−1) , independent of the initial error Z̃(0).

The proof is completed.
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